APFR- Austenitic Stainless Steel

Steel data sheets

Choose the measure unit in which display the data:

Valbruna Grade


Steel type

Austenitic Stainless Steel

Description of material

APFR is a high Chromium-Nickel austenitic stainless steel with excellent corrosion resistance at high temperatures.


This grade is designed to offer excellent corrosion resistance in high temperature service and it has good creep characteristics. It is widely used in engineering and automotive industries, furnaces, the chemical industry, high temperature applications, and petrol-chemical and refinery plants.

Melting practices

Argon Oxygen Decarburization

Corrosion resistance

Optimum resistance is obtained after annealing and rapid quenching. In continuous service, APFR offers a good scaling resistance up to a temperature of 1100°C and about a hundred degrees lower in the case of intermittent service. It has good resistance to oxidizing environments up to 1100°C and up to 950 °C in the case of carburizing and high Sulphur environments. It should be pointed out that the composition and steel making fabricating process of these grades is optimized to obtain best performance at high temperatures. This means that at low or room temperatures, corrosion resistance could not be as good as the typical austenitic grades and this behavior must be well considered in the case of the formation of stagnating low PH condensate products. A further evaluation should concern the consequences of high operating temperatures that are able to cause local structural transformations such as the formation of sigma phase and other intermetallic phases which could whose result in a strong reduction of corrosion resistance. It should be noted that this grade, as for every kind of stainless steel, surfaces should be free of contaminant and scale, heat tint, and passivated for optimum resistance to corrosion.

Cold working

APFR is readily fabricated by cold working operations such as cold drawing and bending, but should only be used for a moderate amount of cold heading or cold up-setting because its chemical balance does not allow it to obtain a soft strain hardened structure after cold deformation. This could result in a rapid die and tool wear. Heavy cold deformation will require an annealing to reduce the structure hardness and restore the ductility.


APFR has the typical machinability of austenitic structures of high Carbon and Nickel which are not resulphured grades and some difficulties could happen in drilling, turning, threading and milling processes due to its capacity to cold work harden, in addition to a low level of chip-ability. Machining parameters should consider that this grade work hardens more than other typical austenitic grades and requires more rigid and powerful machines, in addition to the correct choice of tools, coating carbides and cutting fluids.


APFR can be welded by using any one of welding process employed with typical austenitic grades but requires some different welding process evaluations when compared to these ones. Correct welding practices such as right heat inputs, inert shielding gas and cleanliness before/after welding must be followed to obtain best results in terms of corrosion resistance. In the case of autogenous and high energy autogenous welding processes, there could be a risk of hot cracking in the fused zone due to a solidification mode from primary ferrite to primary austenite. No preheating is normally necessary. APFR is not a low Carbon grade, therefore, a PWHT annealing at higher temperature should be done because this heat treatment improves its intergranular corrosion resistance.

Hot working

APFR has a good hot plasticity and is suitable for processing by hot extrusion or by upsetting with electric resistance heating. However, overheating must be always avoided. The choice of hot working temperature and process parameters must always evaluate the strain rate and the consequent increasing of temperature that is reached after hot deformation. High strain rates and temperatures at the top end of the range during the extrusion and forging process, could generate internal bursts. Small forgings can be cooled rapidly in air or water quenched. However, the best corrosion resistance is obtained by annealing followed by rapid cooling.


AISI 309
W.N. 1.4833
UNS S30900
EN X12CrNi23-13 / X7CrNi23-14
Scroll to top